Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Virus Evol ; 8(1): veac020, 2022.
Article in English | MEDLINE | ID: covidwho-1806583

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge, and their identification is important for the public health response to coronavirus disease 2019 (COVID-19). Genomic sequencing provides robust information but may not always be accessible, and therefore, mutation-based polymerase chain reaction (PCR) approaches can be used for rapid identification of known variants. International travelers arriving in Karachi between December 2020 and February 2021 were tested for SARS-CoV-2 by PCR. A subset of positive samples was tested for S-gene target failure (SGTF) on TaqPathTM COVID-19 (Thermo Fisher Scientific) and for mutations using the GSD NovaType SARS-CoV-2 (Eurofins Technologies) assays. Sequencing was conducted on the MinION platform (Oxford Nanopore Technologies). Bayesian phylogeographic inference was performed integrating the patients' travel history information. Of the thirty-five COVID-19 cases screened, thirteen had isolates with SGTF. The travelers transmitted infection to sixty-eight contact cases. The B.1.1.7 lineage was confirmed through sequencing and PCR. The phylogenetic analysis of sequence data available for six cases included four B.1.1.7 strains and one B.1.36 and B.1.1.212 lineage isolate. Phylogeographic modeling estimated at least three independent B.1.1.7 introductions into Karachi, Pakistan, originating from the UK. B.1.1.212 and B.1.36 were inferred to be introduced either from the UK or the travelers' layover location. We report the introduction of SARS-CoV-2 B.1.1.7 and other lineages in Pakistan by international travelers arriving via different flight routes. This highlights SARS-CoV-2 transmission through travel, importance of testing, and quarantine post-travel to prevent transmission of new strains, as well as recording detailed patients' metadata. Such results help inform policies on restricting travel from destinations where new highly transmissible variants have emerged.

2.
Front Public Health ; 10: 773704, 2022.
Article in English | MEDLINE | ID: covidwho-1775978

ABSTRACT

Introduction: Quality-assured antimicrobial susceptibility testing (AST) depends upon the knowledge and skills of laboratory staff. In many low- and middle-income countries (LMICs), including Pakistan, such types of knowledge and skills are limited. Therefore, the objective of this study was to use openaccess online courses to improve the knowledge of laboratory staff involved in the detection and reporting of antimicrobial resistance (AMR). Methodology: Seven online modules comprising 22 courses aimed at strengthening the laboratory detection of Antimicrobial resistance (AMR) were developed. The courses were uploaded onto the website www.parn.org.pk. Participants had an option of selecting courses of their interest. Online registration and completion of a pre-course assessment (pre-test) were essential for enrolment. However, participation in post-course assessment (post-test) was optional. The number of registered participants and the proportion of participants who completed each course were computed. A paired t-test was used to assess the increase between mean pre- and post-test scores. The association between the participants working in public vs. private laboratories and course completion rates were determined using the chi-square test. Results: A total of 227 participants from Pakistan (March 2018 to June 2020) were registered. The largest number of registered participants and the highest completion rate were noted for AST and biosafety courses, while quality-related courses attracted a lower interest. A comparison of pre- and post-test performance using the paired mean score for the individual courses showed a statistically significant (the value of p < 0.05) improvement in 13/20 assessed courses. A higher course completion rate was observed in participants from public vs. private sector laboratories (56.8 vs. 30.8%, the value of p = 0.005). Conclusions: Our study suggests a promising potential for open online courses (OOCs) toward addressing knowledge gaps in laboratory practice in resource limited settings.


Subject(s)
Drug Resistance, Bacterial , Education, Distance , Professional Competence , Anti-Bacterial Agents , Humans , Internet , Laboratories , Pakistan
3.
PLoS One ; 16(8): e0256451, 2021.
Article in English | MEDLINE | ID: covidwho-1379841

ABSTRACT

BACKGROUND: We investigated the genome diversity of SARS-CoV-2 associated with the early COVID-19 period to investigate evolution of the virus in Pakistan. MATERIALS AND METHODS: We studied ninety SARS-CoV-2 strains isolated between March and October 2020. Whole genome sequences from our laboratory and available genomes were used to investigate phylogeny, genetic variantion and mutation rates of SARS-CoV-2 strains in Pakistan. Site specific entropy analysis compared mutation rates between strains isolated before and after June 2020. RESULTS: In March, strains belonging to L, S, V and GH clades were observed but by October, only L and GH strains were present. The highest diversity of clades was present in Sindh and Islamabad Capital Territory and the least in Punjab province. Initial introductions of SARS-CoV-2 GH (B.1.255, B.1) and S (A) clades were associated with overseas travelers. Additionally, GH (B.1.255, B.1, B.1.160, B.1.36), L (B, B.6, B.4), V (B.4) and S (A) clades were transmitted locally. SARS-CoV-2 genomes clustered with global strains except for ten which matched Pakistani isolates. RNA substitution rates were estimated at 5.86 x10-4. The most frequent mutations were 5' UTR 241C > T, Spike glycoprotein D614G, RNA dependent RNA polymerase (RdRp) P4715L and Orf3a Q57H. Strains up until June 2020 exhibited an overall higher mean and site-specific entropy as compared with sequences after June. Relative entropy was higher across GH as compared with GR and L clades. More sites were under selection pressure in GH strains but this was not significant for any particular site. CONCLUSIONS: The higher entropy and diversity observed in early pandemic as compared with later strains suggests increasing stability of the genomes in subsequent COVID-19 waves. This would likely lead to the selection of site-specific changes that are advantageous to the virus, as has been currently observed through the pandemic.


Subject(s)
COVID-19/epidemiology , Genome, Viral , SARS-CoV-2/genetics , 5' Untranslated Regions/genetics , COVID-19/virology , Genetic Variation , Humans , Mutation , Nasopharynx/virology , Pakistan/epidemiology , Pandemics , Phylogeny , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Whole Genome Sequencing
4.
BMC Res Notes ; 14(1): 316, 2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1362064

ABSTRACT

OBJECTIVE: We investigated the discrepancy between clinical and PCR-based diagnosis of COVID-19. We compared results of ten patients with mild to severe COVID-19. Respiratory samples from all cases were tested on the Roche SARS-CoV-2 (Cobas) assay, Filmarray RP2.1 (bioMereiux) and TaqPath™ COVID19 (Thermofisher) PCR assays. RESULTS: Laboratory records of ten patients with mild to severe COVID-19 were examined. Initially, respiratory samples from the patients were tested as negative on the SARS-CoV-2 Roche® assay. Further investigation using the BIOFIRE® Filmarray RP2.1 assay identified SARS-CoV-2 as the pathogen in all ten cases. To investigate possible discrepancies between PCR assays, additional testing was conducted using the TaqPath™ COVID19 PCR. Eight of ten samples were positive for SARS-CoV-2 on the TaqPath assay. Further, Spike gene target failures (SGTF) were identified in three of these eight cases. Discrepancy between the three PCR assays could be due to variation in PCR efficiencies of the amplification reactions or, variation at primer binding sites. Strains with SGTF indicate the presence of new SARS-CoV-2 variant strains. Regular modification of gene targets in diagnostic assays may be necessary to maintain robustness and accuracy of SARS-CoV-2 diagnostic assays to avoid reduced case detection, under-surveillance, and missed opportunities for control.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Polymerase Chain Reaction , Sensitivity and Specificity
5.
Elife ; 102021 02 16.
Article in English | MEDLINE | ID: covidwho-1084995

ABSTRACT

Before the coronavirus 2019 (COVID-19) pandemic began, antimicrobial resistance (AMR) was among the top priorities for global public health. Already a complex challenge, AMR now needs to be addressed in a changing healthcare landscape. Here, we analyse how changes due to COVID-19 in terms of antimicrobial usage, infection prevention, and health systems affect the emergence, transmission, and burden of AMR. Increased hand hygiene, decreased international travel, and decreased elective hospital procedures may reduce AMR pathogen selection and spread in the short term. However, the opposite effects may be seen if antibiotics are more widely used as standard healthcare pathways break down. Over 6 months into the COVID-19 pandemic, the dynamics of AMR remain uncertain. We call for the AMR community to keep a global perspective while designing finely tuned surveillance and research to continue to improve our preparedness and response to these intersecting public health challenges.


Subject(s)
Anti-Bacterial Agents , COVID-19 Drug Treatment , COVID-19 , Critical Pathways , Drug Resistance, Bacterial/physiology , Global Health/trends , Anti-Bacterial Agents/supply & distribution , Anti-Bacterial Agents/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Critical Pathways/organization & administration , Critical Pathways/trends , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL